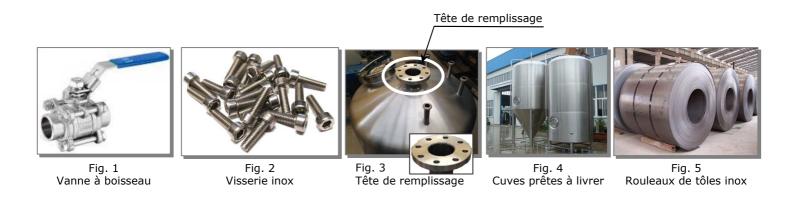


ORGANISATION INDUSTRIELLE

SEQUENCE 8
Activité 4

Gestions des stocks et des approvisionnements Calculs de quantités économiques (Wilson)

+


L'entreprise *AgroStock* conçoit, fabrique et commercialise des équipements de stockage de produits agricoles (cuves pour les liquides, silo, etc.). On s'intéresse ici uniquement aux cuves (fig. 4).

L'entreprise prévoit pour l'année à venir sur ce produit une demande annuelle de 400 unités.

Pour ce produit, la demande est globalement régulière sur l'année (pas de saisonnalité, etc.).

Pour fabriquer les cuves, on a besoin :

- \rightarrow de composants sur catalogue (fig. 1 et 2),
- → de têtes de remplissage (fig. 3), usinées sur plan par la société Frank et Pignard,
- → de matières premières dont des tôles inox livrées sous forme de rouleaux (fig. 5),
- ightarrow de nombreux autres composants non présentés ici et donc ignorés.

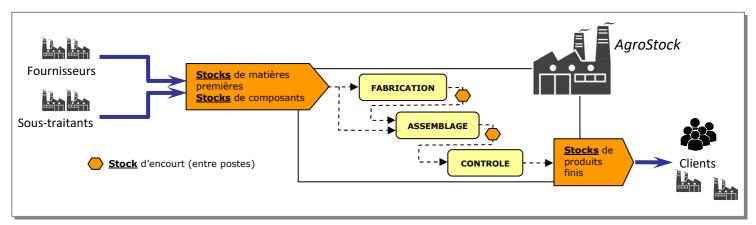


Fig. 6 : vue générale des flux de matières et des points de stockage

PARTIE A

Analyse globale de l'entreprise et des composants

Q1 – L'entreprise <i>AgroStock</i> a-t-elle un bureau d'étude ? □ oui	□ non	\square on ne sais pas.	
Justification:			
Q2 – L'entreprise <i>AgroStock</i> a-t-elle un bureau des méthodes ? [□ oui □ non □ or	n ne sais pas.	

Q3 – Caractériser les éléments en stock proposés dans le tableau (mettre des croix dans les cases).

Elément à stocker	Provenance (selon fig. 6)		Туре			Lieu de stockage			
	Fournisseurs	Sous- traitants	Atelier de l'entreprise	Matière première	Composant	Produit fini	Au sol	Sur étagère	Possible en extérieur
Vannes à boisseau									
Visserie inox									
Têtes de remplissage									
Cuves prêtes à livrer									
Rouleaux de tôle inox									

PARTIE B

Analyse de l'approvisionnement des rouleaux de tôle inox

La politique d'approvisionnement des rouleaux de tôle inox est la « méthode calendaire de Wilson ».

Données:

- → On parvient à faire quatre cuves avec un rouleau de tôle.
- \rightarrow Le taux de possession annuel du stock est de 3 %.
- → Le coût de passation de commande est de 572 € par commande.
- → Le prix d'achat unitaire d'un rouleau de tôle inox est de 2485 €HT.
- → Dimensions d'un rouleau : diamètre d = 2,3 m ; hauteur h = 3,0 m
- → Les rouleaux sont entreposés conformément à la figure 5.

Q4 – Rap	beier les cara	icteristiques de la «	« Methode cale	endaire de Wilson ».
	•	é commandée : e commande :	☐ fixe ☐ fixe	□ variable □ variable
Q5 – Justi	Voir dans	de cette politique e s le cours le contexte d e de la formule de Wils	l'utilisation de cet	n ement. te méthode et aussi la compatibilité avec les limitations de la mise
Q6 – Calc		re C de rouleaux e avec un calcul et une		r l'année.
Q7 – Calc		ité économique <i>Q</i> à l'entier supérieur.	e •	
Q8 – Calc		façons différentes à l'entier supérieur.	le nombre de	livraisons $N_{_{\it e}}$ à prévoir sur l'année.
Q9 – Calc	uler en <i>mois</i>	la durée T entre $\mathfrak c$	deux livraisons	
Q10 – Cal	☞ Ne pas se	la surface de stock e préoccuper des espa te figure pour explique	ces de circulation	des engins de levage ; on se limite à une première approche.